

Air Quality Monitoring Technologies for Urban Areas

Ulrich Quass

Workshop and Conference "Current and future Air Quality Monitoring" Day 2

AirMonTech Work Package 2: The future of AQ Monitoring

Project overview

Goals of AirMonTech Work Package 2

- New instruments improving current monitoring capabilities? (>> yesterday)
- New (health relevant) metrics to be included
- Research needed to further develop instruments and their applicability
- New approaches/strategies for exposure assessment? → WP 4

New monitoring technologies for regulated compounds

- Gas-phase species (NOx, VOCs, Ozone):
 - optimisations of established techniques
 - laser-based methods
 - miniaturised instruments (sensors)
 - Mobile in-situ measurements (eg portable DOAS)
- Particle mass concentration:
 - Combination of real-time monitors with gravimetry or ß-absorption

Taken from MESSAGE website

Potential new metrics: particulate matter

- Ultrafine particles...number concentration
- Submicron particles...surface concentration
- Coarse/fine fraction...oxidative potential, ROS generating activity
- Exposure breakdown to source categories
- Carbonaceous compounds from traffic and wood combustion
- Heavy metals, PAHs, other toxic compounds
- Bioaerosols

Potential new metrics: gas-phase components

- PAHs (to complete gas/particle partition)
- Oxygenated hydrocarbons (aldehydes, ketones, peroxides
 - **→** ROS!)
- Water soluble compounds (WSOC, Ammonia)
- Mercury

Some innovative monitoring systems: "Mini" AMS

ACSM

Aerosol Chemical Speciation Monitor

Measure real-time, non-refractory aerosol particle mass and chemical composition.

Taken from Aerodyne Research website

Some innovative monitoring systems: On-line XRF analyser

Manufacturer: Cooper Environmental Systems, Australia ;Figure taken from Yadav et al., AAAR 2010

Some innovative monitoring systems: aerosol ions & precursors

URG 9000 IC

MARGA

PILS-IC

Taken from URG web site

Taken from Applikon web site

Taken from Metrohm web site

Some innovative monitoring systems: TDLAS

QUANTUM CASCADE LASER TRACE GAS MONITORS

Sensitive, rapid, highly specific and continuous measurements of atmospheric trace gases in ambient air.

DETECTED WITH PULSED-QCLS

TRACE GAS	cm ⁻¹	1 s RMS ppb 76 m path	LoD ppb 100 s
NH ₃	967	0.2	0.06
C ₂ H ₄	960	1	0.5
O ₃	1050	1.5	0.6
CH ₄	1270	1	0.4
N ₂ O	1270	0.4	0.2
H ₂ O ₂	1267	3	1
SO ₂	1370	1	0.5
NO ₂	1600	0.2	0.1
HONO	1700	0.6	0.3
HNO ₃	1723	0.6	0.3
НСНО	1765	0.3	0.15
НСООН	1765	0.3	0.15
NO	1900	0.6	0.3
ocs	2071	0.06	0.03
СО	2190	0.4	0.2
N ₂ O	2240	0.2	0.1
18CO ₂ / 12CO ₂	2311	0.5 ‰	0.1 ‰

Taken from Aerodyne Research website

Innovative monitoring strategies

In-situ, wide range monitoring ("Tomography")

(DOAS, LIDAR etc.)?

Mobile monitoring?

http://www.vectorproject.eu

http://www.aero-tram.kit.edu/

http://www.uni-graz.at/igam1www

AirMonTech WP 2 inputs and outputs

- Health relevance of pollutants and new metrics
- Monitoring techniques
 - state of development
 - technical information (DLs, uncertainties, valiation results, maintenance effort, etc.)...to be stored in WP3 database
 - Improvement potentials
 - Application potentials
 - Ongoing and needed research activities
- Monitoring approaches/strategies
 - Examples and experiences

Questions to answer...

- Which new techniques for established metrics shall be focussed on?
- How can we improve harmonisation with established methods?
- Which new metrics are of interest?
- What is needed to a) test the instruments b) proff their value?
- Do we see new online monitoring technologies, e.g. personal sampling, GPS,...linked to new strategies?

So, let's start....

And thanks

for your attention!