Current and Future Urban Air Quality Monitoring Duisburg, 4th – 6th March 2013

Development of a Cost Efficient Policy Tool for reduction of Particulate Matter in Air

K. Eleftheriadis¹, E. Diapouli¹, C. Samara², A. Kungolos³, A. Proyou⁴, M. Lazaridis⁵

¹Institute of Nuclear and Radiological Science & Technology, Energy & Safety, N.C.S.R. Demokritos ²Department of Chemistry, Aristotle University of Thessaloniki ³Department of Planning & Regional Development, University of Thessaly ⁴AXON Enviro Group Ltd ⁵Department of Environmental Engineering, Technical University of Crete

This work is supported by the European Community LIFE + Environment Policy and Governance programme

Introduction

- $\square PM_{2.5} and PM_{10} ambient concentration levels are still a major environmental problem in several urban areas in the E.U.$
- New evidence of particulate matter long term impacts on human health continues to emerge.
- The Commission of E.C. is moving towards the implementation of the thematic strategy on air Pollution while a large part of the urban population in the E.U. continues to be exposed to PM concentration levels above limit values
 % of urban population

ACEPT-AIR Project – Objectives (I)

The Development of a Cost Efficient Policy Tool for reduction of Particulate Matter in Air (ACEPT-AIR) aims to enable Authorities

- to **assess the reduction** of key environmental pollutants, as well as their interdependencies centered around **PM** levels
- to respond in a competent way to environmental issues, specific to **particulate matter** atmospheric concentrations.

Create a Policy Tool which will:

- Contain a database of PM concentrations, source apportionment studies results and emission inventories
- Create a historical record of control measures / changes in emissions and provide results in measured concentration reductions apportioned to changes in every accounted source
- Allow the policy makers to evaluate the effects of control measures applied on specific emission sources as well as plan new ones.

ACEPT-AIR Project – Objectives (II)

ACEPT-AIR Cibe: PM reduction

Three urban areas have been selected for study:

- Athens Metropolitan Area
- Thessaloniki Metropolitan Area
- Greater Volos Area

National Authorities will have to re-evaluate the present environmental policies and measures and develop new ones.

Urban areas and some industrial regions in Greece are among those in the E.U. with a high number of limit values exceedances in PM_{10} ambient concentrations.

European Commission, and relevant Policy making Organizations

Actions involved (I)

The project is implemented through the following Actions:

- Creation of a database of PM_{10} and $PM_{2.5}$ concentrations and chemical speciation for the three urban areas (Athens, Thessaloniki and Volos)
 - Collection and quality control of historical data
 - Execution of two aerosol campaigns (during warm and cold period) at the three urban centers
- Application of state of the art source apportionment techniques based on the developed databases and receptor modeling
- Compilation of emission inventories for natural and anthropogenic sources for the three areas

Concept and functions for the ACEPT-AIR Policy Tool Operational Platform

Historical PM concentrations database

Long term trends are showing levels to fall but still hovering around target values

Pollution episode

Africal dust intrusion

Clear day

Long term observations of black carbon 24h mean cycle at the Demokritos Global Atmosphere Watch regional contributing station Show a marked reduction for key aerosol pollutants such as Black Carbon

Can we relate emissions and emission reductions to corresponding concentration levels and trends?

Table 2

Linear best fit equation for NO_x, NO₂ and NO concentration and emission variations, average yearly change (%) and correlation coefficients.

	Linear best fit equation	65	Average yearly ch	Correlation				
	Emissions	Concentrations	Emissions	Concentrations	coefficient			
NOx	-859.26 * x + 46,500	-2.2106*x+135.46	- 1.79%	-1.58%	0.95			
CO	-12,049 * x + 365,195	-0.1438 * x + 3.6847	- 3.24%	-3.86%	0.96			
PM ₁₀	-40.868 * x + 1376	- 1.4824 + 50.737	-2.72%	-2.68%	0.91			

Long term emission trends in Athens for the previous decade (Progiou & Ziomas, 2011) Science of the Total Environment 410-411 (2011) 1–7

Source apportionment first principles

Development of A Cost Efficient Policy Tool for reduction of Particulate Matter in AIR

Results from Source apportionment studies in Greece

Major sources:		Area / (PM) fraction	<i>S1</i>	<i>S2</i>	<i>S3</i>	S 4	<i>S5</i>	S6	SA Model
	S1: Road/Urban	Thes 1994 TSP*	4-9	4-5	21-42			44-70	APCA
d	dust,	Thes 1994 TSP*	7-11	4-5	25-33			54-66	FA/MR
	S2: Traffic,	Thes 2002 fine	28	38	14			20	APCA
	S3: Oil Combustion	Thes 2002 coarse	57	9	26			8	APCA
	/ Industry	Thes 2003 PM10*	18-22	45-65	10-35				CMB
	S4:Biomas burning / waste	Thes 2007 PM10*	20-25	23-39	20-38	1-4	1	13-15	CMB
N		Athens 2002 fine	19	30	14	11	<u>19</u>	7	PMF
	S5: Marine,	Athens 2002 coarse	54	8			16	22	PMF
> Uni	S6: Secondary/ dentified	Volos 2001 fine	30		27		20	23	PMF
		Volos 2008 PM10*	3-12	28-40	15-39	22-2 7	1-2	2-9	СМВ

Organization of CURRENT source apportionment studies

Development of an intensive measurement protocol :

- Measurement locations: 2 sites in Athens Metropolitan area
 2 sites in Thessaloniki Metropolitan area
 1 site in Volos
- Measurement period: June September 2011 (summer campaign)
 January February 2012 (winter campaign)
- **Gampling of 2 size fractions:** PM_{10} and $PM_{2.5}$
- Two kind of filters for chemical characterization of aerosol:
 - Anions / cations by Ion Chromatography
 - Major and trace elements by Atomic Absorption Spectrometry and X-Ray Fluorescence
 - Elemental (EC) and organic carbon (OC) by Thermal / Optical analysis
- Collection of PM samples from representative sites and test of spatial aerosol distribution in Athens and Thessaloniki, by the use of the APTL-CERTH mobile laboratory (Mobilab).

Construction of emission inventories

Study areas

Anthropogenic emissions

(Lazaridis, TUC and AXON Envirogroup)

- Annual (Mg/yr) gaseous pollutants (NOx, SOx, NMVOCs, CO, and NH₃) and particulate matter (PM_{2.5} and PM_{2.5-10}) emissions from anthropogenic sources (SNAP 1-10) were derived from the UNECE/EMEP/CLRTAP database (spatial analysis 50×50km²) for the period 2000-2009.
- Emissions from LPS were obtained from the E-PRTR database (v3.3).
- The spatial resolution of emissions from each source category (sectors by SNAP 97) was increased (1×1km² grid for 2008; smaller geographical unit for TMA and GVA for 2007) using surrogate spatial datasets:
 - □ Population density by LAU1 or NUTS3 (EEA),
 - □ Landcover map,
 - □ Location and emissions of LPS (EPER and E-PRTR),
 - □ Road network (modified and updated Openstreetmap 2009 data over AMA),
 - □ Emission weighting factors by sector and landcover class (Goodwin et al., 2009).
- Emissions from agriculture were estimated (activity data from EL.STAT. Database).

Emissions from natural sources (M. Lazaridis, TUC)

- Input data:
 - □ Landcover map (EEA),
 - Meteorological parameters values (Temperature, RH, Air velocity, Photosynthetically active radiation),
 - □ Soil texture map (ESDB v2.0 2004).
- **Windblown dust** emissions are estimated using the methodology of Choi et al. (2008) with the equation (Westphal et al., 1987 modified by Park and In, 2003 and Liu and Westphal, 2001)

Marine aerosol

Open-ocean emissions are computed per grid cell according to Grini et al. (2000), Monahan et al. (1986) and Smith et al. (1993)

Sea-shore emissions are computed per grid cell in the surf zone (50 m) according to de Leeuw et al. (2000), modified by Zhang et al. (2005)

• Emissions from natural sources BVOCs (isoprene, monoterpenes and OVOCs)

Monthly emissions are estimated using the methodology presented in the EMEP/CORINAIR Guidebook (2007) but with different foliar biomass densities and emission potentials for the growing (summer) and dormant (winter) season

Results: Anthropogenic and Natural PM_{2.5} (2008) for Athens Metropolitan area

Forest fires (2000-2007) \rightarrow increase windblown dust emissions by 1.65%.

Main challenges:

- Unravel the relative contribution of the multiple anthropogenic and other sources to the observed PM air concentrations,
- Verify representative coverage of the source apportionment studies in time and space or quantify the limitations
- Document the relative contribution of secondary (Sei) aerosol particles to those from primary emissions (Ei), by taking into account the atmospheric processes which contribute secondary and primary PM at a given receptor site.

Si = a*Ei+b*Sei+e

Current and Future Urban Air Quality Monitoring Duisburg, 4th – 6th March 2013

Potential Secondary PM formation

Pollutant	Aerosol Formation Potential*
Primary PM	1
SO ₂	0.54
NOx	0.88
NH ₃	0.64
NMVOCs	0.02

*According to the methodology of de Leeuw (2002) Values on European level

Data Present	IR tation So s • Time	enarios Build	-up												
Data Info Region: Pollutant:	Thessalo PM10(ex	niki 🔹	•	9	Source: iubSource:	Road tra Passeng	insport ier Cars	~	(All yea Month 	ars Ily variation	for year:	~	Da	ata recall
GraphResu	lts														
	10	All years									The tran	ssaloniki_ sport_Pas	PM10(exhaust) senger Cars	I _Road	
	8														
	6														
tn/year	4														
	2														-
	0			J.											
	1999	2000	20	01 20	02 2	003	2004	2005 Year	2006	20	07 2	800	2009 20	010 2	011
- Data export Filena	ame: in:												Change fol	der)	Save

Current and Future Urban Air Quality Monitoring

Duisburg, 4th – 6th March 2013

ACEPT-AIR				
Data Presentation	Scenarios Build-up			
Emissions Dis	stribution (PM) Change Scenarios			
Region	Athens Year: 2002		Pollutant: PM2.5	~
- Scenario build-up Annual ave	rage pollutant concentration (μg/m3): 30	Results	New annual average pollutant concentration (µg/m3	I): 29,84 ✓ SA avail.
% change in [(+) for increase / (-) for decrease)]: total kilometers driven (R11): -10 traffic (R21): 0 residential (R31): +5 industrial (R32): 0		New Emissions (%) [Changes + SA]	
Emissions categori	ies		49	
Category Det S11 Rod S12 Nat S21 Rod S31 Ret S32 Ind S51 Nat	iails ad Transport (Total - Exhaust) tural (Soil) ad Transport (Exhaust) sidential ustrial tural (Sea salt)		352 207	
			S11 S12 S21 S31 S32	S51
Data export Filename: Sc in: F:	senario_Ath_PM2.5_2002.dat		Change fold	er Save
				Close

Thank you for your attention!

http://www.aceptair.prd.uth.gr/

This work is supported by the European Community LIFE + Environment Policy and Governance programme