

Mitglied d

Any Colour as long as it is Black An additional AQ metric that needs to be better defined

Andreas Petzold | Forschungszentrum Jülich, IEK-8: Troposphere a.petzold@fz-juelich.de

3rd International AirMonTech Workshop | Duisburg, Germany | 04 March 2013

Blind Men and the Elephant

Interpreting "BC" Measurements

GAW

WMO

Black carbon (BC) is carbon that is black.

The formation process is excluded from this definition because of the variety of potential processes. While BC is mostly formed in incomplete combustion, it can be a product of pyrolysis of carbonaceous matter, dehydration of sugar, or heating of wood in an oxygen-free atmosphere

Elemental carbon (EC) is formally defined as a substance containing only carbon. The formal term "elemental carbon" refers to a set of materials with different optical and physical properties instead of a given material with well-defined properties. Examples of "true" EC are diamond, carbon nanotubes, graphite or fullerenes.

Strict definitions are not particularly useful in practice, because

- carbonaceous matter appears in atmospheric aerosols under no circumstances as pure matter;
- it occurs as a highly variable mixture of different carbonaceous compounds with different material properties.

		Thermochemical Classification	Molecular Structure	Optical Classification	
/	/	Elemental Carbon (EC)	Graphene Layers (graphitic or turbostratic)	Black Carbon (BC)	\square
Refractiveness	011000	Refractory Organics	Polycyclic Aromatics, Humic-Like Substances, Biopolymers, etc.	Colored Organics	Absorption
	ואפוומרווא	Non-Refractory Organics (OC)	Low-MW Hydrocarbons and Derivatives (carboxylic acids, etc.)	Colorless Organics (OC)	Specific /

Classification and molecular structure of carbonaceous aerosol components (Pöschl, Anal Bioanal Chem 2003)

Light-absorbing aerosol components

VIS + IR	black carbon brown carbon
"green"	Fe_2O_3 , mineral dust
near IR	H ₂ O
	$(NH_4)_2 SO_4$
_	

In the VIS, only graphitic-like black carbon and refractory organics (brown carbon) absorb light efficiently.

In the graphite lattice, a twodimensional free electron gas can interact almost perfectly with the electro-magnetic radiation.

3rd International AirMonTech Workshop

GAW

Duisburg, Germany

Defined by five essential characteristics

- Composition
- Morphology
- Volatility
- Solubility
- Light absorption

Carbonaceous particulate matter

- a high fraction of which is sp²-bonded carbon
- Consists of aggregates of spherules
 - Individually, from <10 to (typically) 50 nm in diameter</p>

Refractory

Insoluble in water

Strongly absorbs light at all visible wavelengths

 when freshly emitted, has a mass absorption efficiency of at least 5 m² g⁻¹ at the mid-visible wavelength of 550 nm

Property	Characteristics	Consequences
Microstructure	graphitic-like structure	low chemical reactivity in the
	containing a high fraction of	atmosphere; slow removal by
	sp ² -bonded carbon atoms	chemical processes; strong
		optical absorption
Morphology	aggregates consisting of small	high specific surface area;
	carbon spherules of < 10 to	high capacity for sorption of
	approx. 50 nm in diameter	other species
Thermal stability	refractory material with a	high stability in the atmo-
	volatilization temperature near	sphere; longer atmospheric
	4000K; gasification is possible	residence time
	only by oxidation at T > 340° C	

_

Property	Characteristics	Consequences
Solubility	insoluble in organic solvents	Slow removal by clouds and
	including methanol and	precipitation, unless coated
	acetone, in water, and in the	with water-soluble
	other components of the	compounds; longer
	atmospheric aerosol	atmospheric residence time
Light absorption	uniformly absorbing in the	Reduction of the albedo of
	spectral range of visible light;	clouds, snow, and ice;
	characterized by a significant,	atmospheric heating; surface
	non-zero and wavelength-	cooling – all of which lead to
	independent imaginary part	effects on solar radiation and
	of the refractive index over	climate
	VIS and NIR spectral regions	

3rd International AirMonTech Workshop | Duisburg, Germany | 04 March 2013

"BC" Measurement Methods

Evolved Carbon

- CO₂ evolved from thermal or thermooptical methods: IMPROVE / EUSAAR
- BC properties: composition, thermal stabil.

Light Absorption

- Filter-based: Aethalometer, PSAP, MAAP, COSMOS
- In situ: photo-acoustic, ext. minus scat.
- BC properties: light absorption

Laser Incandescence

- Laser heating of particles, e.g., SP2, LII
- BC Properties: refractory, composition

Aerosol

signal

Reference signal

T۵

Photo detector

"BC" Measurement Methods

Aerosol Mass Spectrometry

- Vaporization and detection of carbon ion clusters in mass spectra: ATOFMS, SP-AMS
- BC properties: composition

Raman Spectrometry

- Detection of graphite-like ordered and disordered carbon
- BC properties: graphite-like microstructure

Electron microscopy

- Detection of particle microstructure and morphology, e.g. TEM
- BC properties: morphology

Slide 12

Recommended Terminology

Black carbon (BC) is a useful **qualitative description** when referring to light-absorbing carbonaceous substances in atmospheric aerosol; however, for quantitative applications the term requires clarification of the underlying determination.

In the absence of a method for uniquely determining the mass of BC, the term "BC" should be used as a qualitative and descriptive term when referring generally to material that shares some of the characteristics of BC in particular its carbonaceous composition combined with its light-absorbing properties.

Recommended Terminology

Equivalent black carbon (EBC) should be used instead of black carbon for data derived from **optical absorption methods**. It is recommended to report the optical measurements **primarily as light absorption coefficient**, and secondarily as EBC, together with a suitable mass absorption coefficient (MAC) for the conversion of light absorption coefficient into mass concentration.

Refractory black carbon (rBC) should be used instead of black carbon for measurements derived from **incandescence methods**.

Elemental carbon (EC) should be used instead of black carbon for data derived from methods that are specific to the **carbon content** of carbonaceous matter (evolved carbon, aerosol mass spectrometry, Raman spectroscopy).

Recommended Terminology

Soot is a useful **qualitative description** when referring to carbonaceous particles formed from incomplete combustion.

The term soot generally refers to the source mechanism of incomplete combustion rather than to a material property.

This term is appropriate to and widely used in the research field on the formation of carbonaceous particles in combustion processes and on the emission of particulate matter from combustion sources.

Since atmospheric research usually treats mixed and aged particles instead of freshly emitted exhaust particles, the recommendation is to avoid using this term for atmospheric aerosol.

WMO/GAW Scientific Advisory Group for Aerosols

GAW SAG-Aerosol Members

- John A. Ogren (Chairman), Urs Baltensperger, Angela Benedetti, Markus Fiebig, Thomas Holzer-Popp, Stefan Kinne, Paolo Laj, Shao-Meng Li, Gelsomina Pappalardo, Andreas Petzold, Nobuo Sugimoto, Christoph Wehrli, Alfred Wiedensohler, Xiao-Ye Zhang
- SAG website: http://gaw.tropos.de/index.html
- Comments and questions can be sent to <u>sag-aero@tropos.de</u>
- Petzold, A., et al., Recommendations for the interpretation of "black carbon" measurements, accepted for pub. in ACPD

