Science and policy interface:

Linking EU research and policies for better urban air quality monitoring

Michel Schouppe (DG Research and Innovation)

AirMonTech Workshop
Air Pollution Monitoring Technologies for Urban Areas
Barcelona, 25-26 April 2012
OVERVIEW

- Air pollution in Europe - State and outlook
- Relevant EU research with AQ policy relevance
 - e.g. AirMonTech
- Science policy interface interaction
 - Research findings from EU research
 - Review of the EU Air Quality policies
- Perspectives in the context of HORIZON 2020
Air pollution - Key messages

Europe has significantly cut emissions of the main air pollutants in recent decades, greatly reducing exposure to substances such as sulphur dioxide and lead.

Despite reductions, certain air pollutants, especially particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) and some organic compounds, still pose a threat to human health.

In the EEA-32 countries, the area of sensitive ecosystems exposed to excess acidification from air pollution fell by about 80 % from 1990–2010.

The EU’s long-term objective of not exceeding the so-called critical atmospheric pollutant loads, which ecosystems can tolerate, has not been met. Still too many ecosystems affected by an excess input of atmospheric nitrogen.
Exposure to ground-level ozone concentrations above critical health levels is associated with more than 20,000 premature deaths in the EU-25 annually.

European air pollutant concentrations still frequently exceed limit values set by the EU Air Quality Directives. Many Member States have either not complied, or will not comply by the required target dates, with legally-binding air quality limits set for the protection of human health.

Further international cooperation to mitigate inter-continental flows of air pollution will help nations meet their own goals and objectives for protecting public health and environmental quality.
EU environmental research: three axes for a research strategy

- EU 2020 strategy
- Resource efficiency roadmap
- Eco-innovation action plan
- Environmental legislation
 - 6th EAP
 - Air Quality Framework Dir.
 - National Emission Ceilings
 - Dir. On ambient air quality and cleaner air for Europe
 - 4th Daughter Directive
 - …

Climate change
Natural hazards
Environment and health
Environmental technologies
Natural resources management (Water, air, soil, biodiversity, forests, marine resources, etc.)
Observing and forecasting systems
…

European competitiveness on the global markets

ERA, S & T excellence
Research and development of novel eco-efficient environmental technologies (including monitoring) whose direct or indirect use can substantially contribute to the reduction of materials and resource use, energy consumption, polluting emissions.

Research and development of system solutions

Source: Tomoko Ischiba - Senior Policy Analyst, OECD OECD
INTASENSE project

Advanced air-quality monitoring of key pollutants linked to HVAC systems supports improved living & working environments at minimum energy use.

(1) Particulates
(2) Combustion gases
(3) VOCs

Remedial air quality action
(1) Fresh air
(2) Filtration
(3) Detoxification
Photocatalysis applied to cementitious materials

Photocatalytic concrete

Light2Cat project

Horizontal and vertical applications
FP7 Example: Call 2010 for technologies and automated monitoring of air pollution in cities

- To review the state-of-the-art and assess opportunities and limitations of recent and new generations of in-situ technologies for urban air pollution monitoring.
- Particular focus on automatic analysers for the continuous routine monitoring of harmful substances, especially particulate matters and emerging pollutants, also using proxy indicators.
- Equipment evaluation and selection, operation, maintenance and calibration, data quality, protocols, and processing ... as well as aspects of cost efficiency and equivalence to reference monitoring methods.
- Delivery of a technological research roadmap and consolidated recommendations for the development or implementation of Community environmental legislation.
- Involvement of the researchers and technology providers together with the stakeholders involved in routine monitoring of urban air pollution.
- Links to relevant national and international programmes and networks.
AirMonTech project

- Data base of air pollution monitoring technologies and performances
- Based on a review of recent technologies (approval tests, standard operating procedures, equivalance testing)
- Based on a review of novel promising technologies for automated monitoring or regulated and non-regulated air pollutants
- Recommendations for enhanced harmonisation and standardisation, adoption of new monitoring devices/strategies, new health relevant metrics

-> Leading to harmonised air pollution monitoring in Europe
-> Leading to improved implementation of EU environmental policies and strategies on ambient air quality and cleaner air for Europe
Wider list of 20+ FP6/FP7 projects with a strong component on Air Quality

- **FP6**: Eucaari, Nitroeurope, Heimtsa, Intarese
- **FP7**: Accent-Plus, CityZen, Megapoli, Pegasos, Eclipse, Eclaire, AirMonTech, Actris, Escape, Hereplus, Transphorm, Hitea, Officair, Purge, Urgenche, Atopica...

- 400+ research teams, all over Europe!
 - atmospheric composition
 - aerosols, clouds and trace gases
 - diseases in changing climate/air quality
 - emission hot spots, megacities
 - Emission abatement strategies of climate forcers
 - Exposure-response relationships and thresholds
 - health risk maps related to O3 and PM
 - Indoor air exposures and health effects

Total Budget: +/- 150 M €, EU contribution: > 100 M €
Collection of air policy related research outputs

EC-funded projects in the field of air quality, climate change and health aspects included, have been asked to provide science-based evidences relevant for the review process. Latest scientific findings relevant to the EU Air Quality policy will be gathered into a single report to be finalised by the end of 2012.

October 2011
Drafting the general outline of the report

2nd Stakeholder meeting (DG ENV)
Presentation of the first outline

January 2012
Writing the report
First draft for discussion

June 2012
Consultation and iteration

End of 2012
Delivery of the report
Integrated Assessment

Air Quality & Climate

Air Quality & Health

Integrated Assessment
Lead Authors

Nitrogen
Mark Sutton
CEH Edinburgh

Particulate matter
Sandro Fuzzi
CNR Bologna

Ozone
Paul Monks
Univ Leicester

AQ and climate
Guy Brasseur
Climate Service Cr

AQ and health
Bert Brunekreef
Univ Utrecht

Integrated Assess.
Rainer Friedrich
Univ Stuttgart
AIM:
“a robust EU Clean Air package, updating existing policies and directives including the National Emission Ceilings Directive according to latest science, and outlining further cost-effective measures to move much closer to the related 6EAP's objective: to achieve levels of air quality that do not result in unacceptable impacts on, and risks to, human health and the environment.”
Review of the EU Air Quality Policies - Mandate

 - Cfr also 6EAP assessment
- Article 32 of Ambient Air Quality Directive (2008/50/EC)
 - Standards for PM2.5 (legally binding national exposure reduction obligations) and, as appropriate, update standards for other pollutants
 - Taking into account latest WHO information, air quality situation and reduction potential, revision of NEC directive, progress in implementation, …
- Article 8 of Air Quality 4th Daughter Directive (2004/107/EC)
 - Standards for heavy metals (As, Cd, Hg, Ni) and PAHs
 - Taking into account trends, effects, exposure, measurement, measures, …
- Article 10 of National Emissions Ceilings Directive (2001/81/EC)
- Resource Efficiency Roadmap 2011 (COM(2011)571)
Review of the EU Air Quality Policies - Timetable

Evaluation phase

Policy development phase

Finalisation phase

Consultation: x x x x x x x

2011 2012 2013

Council / EP
Review of the EU Air Quality Policies
Some key Issues Emerging from Consultations

- PM: demand for simplification and focus (limit values redundancy)
- NO2: challenging health justification & playing the need to trade-off
- Ozone metrics (duration and gravity of exceedance)
- Target versus limit values, limit values versus exposure reduction
- New standards/deletion of standards
- Measures (costs, transboundary aspects, sensitive populations,…)
- Monitoring siting (representativeness) and density (number of stations per zone)
- Modelling (mandatory?, uncertainty, input quality, output resolution…)
- Public information (complex parameters, AQ indices…)
- Role of indoor air quality in relation to ambient air quality
- Additional focus on ecosystem protection
- Stimulating eco-innovation, link to resource efficiency
Horizon 2020

Europe 2020 priorities

Societal Challenges
- Health, demographic change and wellbeing
- Food security, sustainable agriculture, marine and maritime research and the bioeconomy
- Secure, clean and efficient energy
- Smart, green and integrated transport
- **Climate action, Resource Efficiency and Raw Materials**
- Inclusive, innovative and secure societies

Industrial Leadership
- Leadership in enabling and industrial technologies (ICT, nano, materials, bio, manufacturing, space)
- Access to risk finance
- Innovation in SMEs

Excellent Science
- European Research Council
- Future and Emerging Technologies
- Marie Curie actions on skills, training and career development
- Research infrastructures

Supporting the objectives:
European Institute for Innovation and Technology
Joint Research Centre

Shared objectives and principles
Common rules, toolkit of funding schemes

International cooperation
European Research Area

Simplified access
Dissemination & knowledge transfer
Priority 3. Societal challenges

Why:

- Concerns of citizens and society/EU policy objectives (climate, environment, energy, transport etc) cannot be achieved without innovation
- Breakthrough solutions come from multi-disciplinary collaborations, including social sciences & humanities
- Promising solutions need to be tested, demonstrated and scaled up
HORIZON 2020 – Specific programme

Main references to ‘air quality’:

- **Challenge 3 – ENERGY**
 3.1.3 Foster European smart cities and communities
 -> Reduced energy consumption, energy and air quality, ICT for a low Carbon society

- **Challenge 4 – TRANSPORT**
 4.1 Resource efficient transport and mobility in urban areas
 -> New mobility concepts to reduce air pollution and noise

- **Challenge 5 – CLIMATE CHANGE, RESOURCE EFFICIENCY AND RAW MATERIAL**
 5.2 Sustainably managing natural resources and ecosystems
 -> Air as a natural resource, air quality and ecosystem services
 -> Eco-innovation

- Non-nuclear direct actions of the JRC in support of challenge 5
 Air quality thematic models as part of an integrated modelling framework for sustainable assessment
Thank you for your attention

For more information:

-DG ENV: Scott.Brockett@ec.europa.eu
-DG RTD: Lara.Passante@ec.europa.eu
Jose.Jimenez@ec.europa.eu
Michel.Schouppe@ec.europa.eu
Monitoring technologies - Examples of ongoing EU research

Marine/coastal monitoring
- Floating sensorised robots
- PP automated devices

Soil contamination mapping
- Geophysical sensors (geoelectric, seismic, magnetic, SPI, GPR/EMI)
- Geochemical techniques
- Biosensors

Water monitoring
- Water pipelines and buried infrastructures
- Aquifer monitoring
- Drinking water quality

Air monitoring
- Automated analysers for monitoring urban air
- Indoor air quality