

Time-resolved and Online Determination of Reactive Oxygen Species (ROS) in Ambient Air

<u>Markus Kalberer</u>, Stephen Fuller Department of Chemistry University of Cambridge, UK

- Oxidative stress a possible mechanism of particle-induced health effects
- A new instrument measuring reactive oxygen species (ROS) concentration on-line: design and instrument characterization
- First applications of the instrument

Health effects of aerosols

Ambient particle cause negative biological/health effects as observed in epidemiological and laboratory studies

AirMonTech, Barcelona, 25 April 2012

What particle properties are relevant for biological effects?

particles e.g., from combustion sources

effects in the cell

- **ROS**?
- oxidative stress?
- inflammation

potential damaging properties

- organic components
- metals
- mass, size, surface properties

Oxidative stress in the lung

 Oxidative stress = disturbance of prooxidantantioxidant balance leading to potential biomolecular damage

- Oxidative stress can be induced by ROS in the lung lining layer
- Antioxidant depletion may cause damage to cell membranes, proteins
 & DNA

PM induced ROS in the lung

Formation routes of ROS from aerosol particles:

- 1. Particle bound ROS e.g. H_2O_2 , ROOH, radicals = reactive and short-lived
- 2. (Catalytic) ROS production in the lung lining fluid by redox active components; e.g., quinones and metals
- 3. Metabolism of organics (e.g. PAHs) may lead to ROS formation

Measuring ROS concentrations in solution - the reaction system

- DCFH is oxidised by ROS in the presence of Horseradish Peroxidase to the fluorescent product DCF; excited at 470 nm and emitting at 520 nm.
- DCFH reacts with almost all ROS

AirMonTech, Barcelona, 25 April 2012

Measuring ROS concentrations in solution - the reaction system

- The fluorescence is directly proportional to the concentration of DCF
- While the DCFH assay gives a linear relationship with H_2O_2 , organic peroxides react much slower with HRP.
- This assay gives an indication of ROS activity related to an equivalent H₂O₂ concentration. NOT an absolute ROS concentration.

Measuring ROS concentrations online

- Many current aerosol studies measuring composition use off-line filter collection techniques
- The time delay between collection and analysis possibly allows for *degradation and loss of reactive components*

- Online analysis allows for fast analysis that minimizes loss of reactive components and allows for higher time resolution
- Online analysis allows for high time resolution

AirMonTech, Barcelona, 25 April 2012

Fast Online Quantification of Oxidizing Particle Components

AirMonTech, Barcelona, 25 April 2012

Fast Online Quantification of Oxidizing Particle Components

AirMonTech, Barcelona, 25 April 2012

Particle into liquid sampling

AirMonTech, Barcelona, 25 April 2012

ROS quantification

AirMonTech, Barcelona, 25 April 2012

Experimental set up

Fan cooled 5 W 470 nm LED

Spectrometer

AirMonTech, Barcelona, 25 April 2012

Sensitivity calibration with H₂O₂

Fluorescence intensity after reaction has gone to completion after <10min

AirMonTech, Barcelona, 25 April 2012

Sensitivity calibration with H₂O₂

AirMonTech, Barcelona, 25 April 2012

Sensitivity calibration with H₂O₂

AirMonTech, Barcelona, 25 April 2012

- Experiments at Paul Scherrer Institut (PSI), Switzerland
- Primary moped emissions photochemically aged in smog chamber
- Mopeds conforming to both Euro 1 and Euro 2 emissions regulations

AirMonTech, Barcelona, 25 April 2012

Secondary Organic Aerosol Formation

AirMonTech, Barcelona, 25 April 2012

AirMonTech, Barcelona, 25 April 2012

AirMonTech, Barcelona, 25 April 2012

Smog Chamber Experiments: POA vs. SOA

ROS concentration in POA (before photochemical aging): negligible

AirMonTech, Barcelona, 25 April 2012

Smog Chamber Experiments: Euro1 vs. Euro2

ROS / μ g POA large differences between Euro 1 and Euro 2

AirMonTech, Barcelona, 25 April 2012

Ambient measurements

ROS in ambient urban air (Cambridge)

AirMonTech, Barcelona, 25 April 2012

Conclusions

- Design of online instrument to quantify ROS
- ROS "scavenged" within seconds: reactive ROS are not lost
- Time resolution: ca. 10min
- Detection limit: 10nmol (H_2O_2), 4 nmol / m^3
- ROS only observed in SOA from moped emissions ROS concentrations of ca. 1 nmol µg⁻¹ SOA
- No ROS in primary moped emissions

Acknowledgements

PSI, Villigen – Smog Chamber Experiments

Stephen Platt Josef Dommen Andre Prevot Urs Baltensperger

Thanks for your attention

AirMonTech, Barcelona, 25 April 2012